A Primer on Learning in Bayesian Networks for Computational Biology

نویسندگان

  • Chris J. Needham
  • James R. Bradford
  • Andrew J. Bulpitt
  • David R. Westhead
چکیده

Bayesian networks (BNs) provide a neat and compact representation for expressing joint probability distributions (JPDs) and for inference. They are becoming increasingly important in the biological sciences for the tasks of inferring cellular networks [1], modelling protein signalling pathways [2], systems biology, data integration [3], classification [4], and genetic data analysis [5]. The representation and use of probability theory makes BNs suitable for combining domain knowledge and data, expressing causal relationships, avoiding overfitting a model to training data, and learning from incomplete datasets. The probabilistic formalism provides a natural treatment for the stochastic nature of biological systems and measurements. This primer aims to introduce BNs to the computational biologist, focusing on the concepts behind methods for learning the parameters and structure of models, at a time when they are becoming the machine learning method of choice. There are many applications in biology where we wish to classify data; for example, gene function prediction. To solve such problems, a set of rules are required that can be used for prediction, but often such knowledge is unavailable, or in practice there turn out to be many exceptions to the rules or so many rules that this approach produces poor results. Machine learning approaches often produce better results, where a large number of examples (the training set) is used to adapt the parameters of a model that can then be used for performing predictions or classifications on data. There are many different types of models that may be required and many different approaches to training the models, each with its pros and cons. An excellent overview of the topic can be found in [6] and [7]. Neural networks, for example, are often able to learn a model from training data, but it is often difficult to extract information about the model, which with other methods can provide valuable insights into the data or problem being solved. A common problem in machine learning is overfitting, where the learned model is too complex and generalises poorly to unseen data. Increasing the size of the training dataset may reduce this; however, this assumes more training data is readily available, which is often not the case. In addition, often it is important to determine the uncertainty in the learned model parameters or even in the choice of model. This primer focuses on the use of BNs, which offer a solution to these issues. The use of Bayesian probability theory provides mechanisms for describing uncertainty and for adapting the number of parameters to the size of the data. Using a graphical representation provides a simple way to visualise the structure of a model. Inspection of models can provide valuable insights into the properties of the data and allow new models to be produced.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf

Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation  method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...

متن کامل

A Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf

Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation  method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...

متن کامل

 Structure Learning in Bayesian Networks Using Asexual Reproduction Optimization

A new structure learning approach for Bayesian networks (BNs) based on asexual reproduction optimization (ARO) is proposed in this letter. ARO can be essentially considered as an evolutionary based algorithm that mathematically models the budding mechanism of asexual reproduction. In ARO, a parent produces a bud through a reproduction operator; thereafter the parent and its bud compete to survi...

متن کامل

An Introduction to Inference and Learning in Bayesian Networks

Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...

متن کامل

The modeling of body's immune system using Bayesian Networks

In this paper, the urinary infection, that is a common symptom of the decline of the immune system, is discussed based on the well-known algorithms in machine learning, such as Bayesian networks in both Markov and tree structures. A large scale sampling has been executed to evaluate the performance of Bayesian network algorithm. A number of 4052 samples wereobtained from the database of the Tak...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • PLoS Computational Biology

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2007